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Difference Analogues of Quasi-Linear Elliptic Dirichlet 
Problems with Mixed Derivatives* 

By Robert S. Stepleman 

Abstract. In this paper we consider a class of difference approximations to the Dirichlet 
problem for second-order quasi-linear elliptic operators with mixed derivative terms. The 
main result is that for this class of discretizations and bounded g (the right-hand side) a 
solution to the difference equations exists. We also explicitly exhibit a discretization of this 
type for a class of operators. 

1. Introduction. In this paper we will be concerned with obtaining existence 
results for solutions of nonlinear systems of n equations in n unknowns which arise 
in a natural way from the study of the following problem. Let Q be an open, bounded, 
and simply connected region in the plane, and let 4/: aQ -> Rk. Then, find u E C2(Q) n 

C(Q) such that 

(1.0) Lu- g(s, t, U, U8, ut), (s, t) E Q, 

u = +, (s, t) E-( AQ, 

where L is a second-order quasi-linear elliptic operator of the form 

(1.1) Lu = Au.. + 2Bu8, + Cutt. 

Here A, B, and C depend, in general, on s, t, u, u, and ut, but not on the second 
derivatives. 

To treat the problem (1.0), we use arbitrary consistent finite-difference approxima- 
tions to the various derivatives, which yield nonlinear finite-dimensional operators of 
"positive type"; this extends methods of discretizing linear elliptic partial-differential 
equations so as to yield operators of positive type which have been studied by Motzkin 
and Wasow [7], and Bramble and Hubbard [2], as well as others. By these discretiza- 
tion methods, we obtain nonlinear systems of equations as approximations to (1.0); 
and then apply fixed point techniques to these systems to show the solutions exist. 
In doinig this, we generalize several results of Bers [1]. We also extend a discretization 
given by Bramble and Hubbard [2], which gives operators of positive type for linear 
uniformly elliptic problems, to the largest class of quasi-linear elliptic problems for 
which it gives operators of positive type. In doing this, we correct several errors in 
Frank [4], which was an attempt to extend this discretization to all quasi-linear 
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uniformly elliptic problems. The problem of discretizing quasi-linear elliptic operators 
to obtain operators of positive type has also been considered by McAllister [5], [6]; 
our results are in a broad sense generalizations of the results there. 

2. Affine Operator-Valued Mappings. The main tool we will use in obtaining 
our existence theorems for solutions to discretized versions of Dirichlet problems is 
a result about affine operator-valued mappings. We now proceed to develop some 
needed theory. 

Definition 2.0. Let A(R -* R) be the set of affine operators mapping R' to R. 
Define for all x, y E RK the mapping S by 

(2.0) S(x)y = A(x)y + B(x)c, 

where A(x) E L(R - RK), B(x) E L(R -- RK), and c EE R. We call S an affine 
operator-valued mapping and write S EE A(R' -* A(RK - R)). 

Definition 2.1. Let S E AT(R' - A(RK --> RK)) be given by (2.0). We say S is 
irreducibly diagonally dominant of positive type or I.D.D.P.T., if the matrix A(x) 
is irreducibly diagonally dominant for all x R K and the q X (q + p) matrix Q(x) 
defined by 

(2.1) [Q(x)]i = [A(x)]i, i, j q, 

= [B(x)]i, i < q, q + 1 j < q + p, 

satisfies [Q(x)]ii < 0, [Q(x)]ij > 0, j 5 i, i = 1, ... q,j = 1, ... q+pforall 
x C RK, and 

Pi 
+Q 

(2.2) I[Q(x)Il > E [Q(x)]ii, i = 1, . q, 
i;1;jdi 

for all x E RK. 
The next theorem is a generalization of results of Bers [1] and McAllister [6]. 
THEOREM 2.2. Let S E X(R -> A(R -> RK)) be given by (2.0). Assume that S is 

I.D.D.P.T. and that there exists v G RK such that for all x C RK 

(2.3) S(x)v _ e, 

where e E RK is the vector with one in each component. Then, for all x R K, [A(x)]- 
exists and has nonpositive elements; that is 

(2.4) [A(x)]-' < 0 

Moreover, the following inequalities hold uniformly for x E R: 

(2.5) jj[A(x)] lB(x)jj. < 1, 

and 

(2.6) I![A(x)F'I/x < IIuII + 

where J J is the 1P operator norm. 
Proof. Since the operator S is I.D.D.P.T., the matrix A(x) is irreducibly diagonally 

dominant for each fixed x EE R. From Collatz [3, p. 45], it follows that A(x) is 
nonsingular and [A(x)]-l < 0. Let x C RK be fixed but otherwise arbitrary and set 

(2.7) A(x) = D(x) + M(x), 
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where D(x) is the diagonal part of A(x). If we define 

Ae(x) D(x) - El + M(x), E > 0, 

then we have 

Il[Ae(X)]-1B(X)llc = 1l[I + (D(x) - EI)-'M(x)]-'(D(x) - EI) 'B(x)llI. 

The diagonal dominance of S (i.e. (2.2)) implies that 

||(D(x) EI)-lM(x)ll0 < 1, E > 0, 

so that by Banach's lemma 

(2.8) ll[A,(x)] B(x)ll I _(D(x) -E)- B(x)l_ , E>O. 
ll(A(X)F1BX)lo~ I - ll(D(x) - el) 'M(X)llc. 

Now, 

IJ(D(x) -eI) B(x)ll,= max [B()I < 1 - Zmax- I[A()i AE 
,1,i6, l[A(xY]ii - El =~ 1:!i q - [Ax)L - l 

where the last inequality follows from the diagonal dominance of S. Since 

ll(D(x) - 4EIf 1M(x)j . max =1;j- i (AxL 
1St Sq l[A(x)ji. - El 

we have from (2.8) 

||1[ A,(x) ] lB(x) co < 1, 5 e > O. 

Letting e -* 0 we obtain (2.5) uniformly for all x E RK. 
For y C R', we have the identity 

(2.9) y = -[(4(x)]-'B(x)c + [A(x)]-'[S(x)y]. 

Let v E RK satisfy (2.3). Since [A(x)]f < 0, it follows that 

liv + [A(x)]-7B(x)cll,, = l[A(x)]-FS(x)vll. lo ll[A(x)1-1ell1. 

Then, (2.6) follows from (2.5) and the observation that 

II[A(x)]-lllO- Il[A(x)]-1ell.. 

THEOREM 2.3. Let S satisfy the hypothesis of Theorem 2.2, and assume that A(x) 
and B(x) are continuous functions of x C RK. Let F:R -> RK be continuous on R' and 
satisfy for all x C RK, IFr(x)ll < M < o. Then, there exists a solution to the 
equation 

(2.10) S(x)x = F(x) 

in the sphere 

(2.11) 8 = {x C R'l llxll, < llcl 1. + (IlIvI 1 + Ilcll 1)MI 

Proof. The Eq. (2.10) is equivalent to the fixed point problem: find x C R' so 

that 

(2.12) x = -[A(x)]F'B(x)c + [A(x)]F'F(x) 2(x). 
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From Theorem 2.2, it is clear F(S) C S. Since F is continuous on 8, theconclusion 
follows by the Brouwer fixed point theorem. 

3. The General Discrete Problem. We consider in this section the discrete 
problem obtained from an arbitrary discretization of the boundary-value problem 
of Section 1 for operators L that satisfy the following definition: 

Definition 3.0. We say L of (1.1) is uniformly elliptic if there exists cl ? c0 > 0 
such that 

(3.0) cl(72 + .2) 
> A(s, t, r, p, q)n2 + 2B(s, t, r, p, q)-t + C(s, , r, p, &2 

> Co(72 + v2), 

for all (s, t, r, p, q) E Q X RJ3 and , real. 
We assume that a square mesh of a side h is placed on 52 and denote by Qh, the 

intersections of all grid lines interior to Q, and number these P1, * , PN. Set OQh 

to be the set of all intersections of grid lines with aQ, plus (possibly) any other finite 
set of points on aQ, and number these PN+ 1, * * * , PM. Finally, put Qh = Qh U aQh 

We approximate the various derivatives us, ut, u8,, u., ut at each Pi El Oh by 
general linear combinations of u(Pi) _ ui, Pi C Qh, that is 

M M 

(3.1) u'(Pi)- a'iu; Ut(Pi)- a2j 
i=l jli 

and 

(3.2) USS(Pi) b* X, b1S i, ust(Pi) _Eb2SUi, utt(Pi)- b3SU;. 
i=1 is= j=1 

The coefficients of the linear combinations will, in general, depend on h. 
Using the approximations (3.1) and (3.2), we replace the boundary-value problem 

of Section 1 by the system of equations 

(3.3) Ai blij u + 2Bi , b 2ui + C , b3 g i, i 1, , N, 
i=1 3 1 1 2 

where Ai = A(Pi, ui, 5?,' a>ivi, E,= ai uj) and Bi, Ci, and gi are similarly defined. 
Define the block matrices 

H = (HT*, . H T H)T, K = (KT T, , 
, 

, 

where the superscript stands for transpose. Here, 

0) , 1,O,l, 0 . , O 0, ,0- 

Hi. - aj,j . .. 
*.*, ai, , Ki = aj,v+j , a,m 

ai, 1. - - .. . .. . . al Xv _ai N+1 ax M_ 
and the one in II appears in the ith position. Denote by w the vector of boundary 
values with components ivw = zii, j = N + 1, * * * , M, and define the affine operators 
Ti: Rv --+ i = 1, *., N, and T: R v R3Nby 

(3.4) T,x = Hix + Kiw, i = 1, , N, Tx =Hx + Kw. 

Let C: R' - R^ be given by [G(x)]j = g(Pi, Tix), i = 1, . , N. Denote by 
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Lh: RN - L(RN -> RN), and 
Fh: RN > L(RM-N, RN), respectively, the matrix-valued 

mappings defined by 

[Lh(x)Ii i - 
A(Pi, Tjx)b1; + 2B(Pi, Tix)b 2 + C(Pi, Tix)b3;, 

i, j- 1, ,N, and 

[Fh(x)]i- A(Pi, Tix)bl,i+N + 2B(P1, Tix)b ,i+N + C(Pi, Tix)bi 3+, 

i-1, ,N,j j-1,*** ,M -N. If we set x E RN to be the vector with components 
u;, i-1, *1* , N, then the system of equations (3.3) is given by 

Lh(Ax ? Fh(x)w = G(x). 

Let us define Th EC T(RN - A(RN - > RN)) by 

(3.5) Th(Y)Z= Lh(y)z + FA(Y)w 

Then, (3.3) is equivalent to 

(3.6) T,A(x)x= G(x). 

We now have the problem in a form where the results of the previous section 
can be applied. 

Definition 3.1. Let 8 stand for some first or second derivative operator, 
bh(P): C(Q) -* R', for all P C U. Then 8h is consistent with a if any u E C2(Q) 

lim 18h(P)U - (6U)(P)l = 0 

uniformly over Q. 
LEMMA 3.2. Let 

L,u = Lu + d(s, t, u, u8, Ug)U, + e(s, t, u, u8, U)Ut -f(s, t, u, u8, U)U, 

where L is the uniformly elliptic operator given by (1.1) and 

Id(s, t, r, p, q)l , le(s, t, r, p, q)l <c < , 

f (s, t, r, p, q) _ , 

uniformly on C X R3. Assume we discretize L, with consistent approximations to the 
first and second derivatives. Then, there exists Vh C RN such that for all h sufficiently 
small 

(3.7) T Vh(X)Vh >- e 

for all x E RN, and I Iv,I | is uniformly bounded in h. Here, of course, Th iS the operator 
corresponding to the cliscretization of L1. 

Proof. Suppose, without loss of generality, that Q is included in the strip 
0 ? s ? k*. Let k(s, t) = eOs - ea with 3 2c/c0 and a > Ok*. Here, c0 is the 
smaller constant of uniform ellipticity. Observe that, 1- e' < k(s, t) < 0. Define 
Oh E RN as the vector with components (v,)i = k(Pi), i = 1, * , N, and note that 
I sAj < e' - 1, uniformly in h. Now, choose x C RN arbitrary and calculate 

[T&(X)hl]m T [x32A(Pm, TmX) + /3d(Pm, Tmx)]e$8; + f(Pm, Tmx)[ea - eai] 

- I[(Th(X)hl]m - [/2 A(Pm, T1.x) + 13d(Pm, Tmx)]e 8; 

- f(Pm, Tmx)[ea -eosi] . 
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Here, Pm (si, ti). Since the approximations to the derivatives are consistent, we 
have for all h sufficiently small, and P E Qh, that the last term in the above expression 
does not exceed c2/c,. Then, since the sum of the first two terms is not smaller than 
2c2/c,, we may conclude 

[Th(X)Dh ]m - C/CO 

for all Pm E Qh and h sufficiently small. Thus, the vector vh cO5hI/c2 satisfies (3.7) 
for all x C RN and IlVhllco) ? c0(e - 1)/c2. 

The proof of the following existence theorem is immediate from Theorem 2.3 
and Lemma 3.2. 

THEOREM 3.3. Consider the boundary-value problem of Section 1 for uniformly 
elliptic L1 instead of L. Assume we discretize L1 with consistent approximations to the 
first and second derivatives. Assume further that the resulting operator Th is I.D.D.P.T. 
for all h sufficiently small, and in addition Lh, Fh and 0 are continuous functions of 
x E RN for all h sufficiently small. Let g: Q X R3 -* R1 satisfy Ig(s, t, r, p, q)I < 
M < c, uniformly on Q X R3. Then, for h sufficiently small the discrete analogue of 
the boundary-value problem has a solution in the sphere 

S = {x E RN I |Ix||. < lIwIl| + (2co[ea - ]IC2)MI 

where a and c are defined in Lemma 3.2. 
We have proved a result for a slightly more general operator than (3.6), because 

it will be useful in the next section. 

4. An I.D.D.P.T. Operator. In this section, it will be convenient to have a 
doubly subscripted notation for the gridpoints as well as the singly subscripted 
notation of the previous section. We effect this by the following procedure: number 
the rows and columns of Qh from left to right, bottom to top, and denote by Pi. the 
element in the ith row and jth column. Then, any gridpoint may be represented in 
the equivalent notation P, or Pi;. 

For a linear uniformly elliptic operator L of the form 

(4.0) Lu = A(s, t)u8. + 2B(s, t)u8t + c(s, t)utt, 

Bramble and Hubbard [2] consider the discretization 

) p) I uj+j,j 2uii + uj_l,i = p (a) u,88(Pjj) - h2u ? (pi) 

(b) u ~u(P i ) 2uii + ui i -i 

(4.1) 

(c) u (Pi) a2 + o2 
sgn (B(P,j)) uj(Pi )- a 2 u2s(pii) 

-2 + 2 tt(Pii) j 

where uij = u(Pij) and 

(4.2) uz2(P17) _ u,+, - 2uii + Ui:F$,j-a (4.2) Uiz(Pi ~~~~~h2(a2 + 032) 
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Here, a and j3 are relatively prime integers that may be functions of the point P, i and 
in (4.2) we use the points P,+?,ij+, Pi-:,j1a if B(Pi.) > 0 and the points Pi_:i+a, 
Pi+,.,j_,a if B(PiX) < 0. 

Bramble and Hubbard [2] show that the discretization (4.1) always leads to a Th 

which is I.D.D.P.T. Their main result that allows this conclusion can be summarized 
as the following: 

THEOREM 4.0. Suppose L of (4.0) is uniformly elliptic and has continuous coefficients 
A(s, t), B(s, t) and C(s, t) for (s, t) E Q. Then, there exists constants ko and X) with 
ko > 0, andl rq < o and a mapping y : Q (- , oz) such that for all (s, t) E 

A'(s, t) = A(s, t) B(s, t)-ko 

(4.3) C'(s, t) C(s, t) -y(s, t)B(s, t) _ k1o, 

B'(s, t) 2y (ys, ( t) + IB(s, t) _ O . 

Moreover, y can be chosen so that Iy(s, t) I = a(s, t)/f(s, t), where a(s, t) and ,B(s, t) 
are relatively prime integers satisfying 

(4.4) ae(s, t) >_ 1, 0 (s, t) <! ?77 

for all (s, t) E O. 
It is easy to see why a result like Theorem 4.0 is important, because, if we substi- 

tute the discretization (4.1) into (4.0), then the coefficients of the discretized operator 
are just A', B' and C' of (4.3). 

For quasi-linear uniformly elliptic operators, McAllister [6] showed that if the 
coefficients of L satisfy the inequalities 

(4.5) oo > a, _ A(s, t, r, p, q), C(s, t, r, p, q) _ aO > 0, 

2 IB(s, t, r, p, q)I < aO, 

for all (s, t, r, p, q) ? A X R3, then the discretization (4.1) (a) and (b) and 

(4.6) h2u8U(P) +l,i+l - Ui+l,- u,+l + uii, B(Pi.) > 0, 

-u= i - -Ui - ui+1,f-1 + ui,i',i B(P,j) < 0, 

gives rise to a Th which is I.D.D.P.T. This is somewhat unsatisfactory, because of the 
very restrictive nature of (4.5). Frank [4] attempted to overcome this restriction by 
extending the Bramble and Hubbard discretization to all quasi-linear uniformly el- 
liptic operators of the form (1.1). The tool Frank used for proving this, was the claim 
that there exists a mapping y : Q -> (- co, co) with all the properties of Theorem 4.0, 
for L whose coefficients A, B and C depend on u, u8 and u, as well as s and t. Unfortu- 
nately, this is untrue. Consider the following uniformly elliptic operator: 

(4.7) Lu = + sin' U U + 3 ust + ( + COS U)Utt. 

At (7r/2) we have 

A() 2> B(2) 3 2) = 
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while at 0 we have 

A(0) = < B(O)- 
2 

< C(0) = . 
2 3 ~~~~2 

Thus, to satisfy an analogue of Theorem 4.0, y would have to be both strictly less 
than one and strictly greater than one, an absurdity. We will show that an analogue 
of Theorem 4.0 holds if and only if the coefficients of L satisfy the following condition: 

W(s, t) inf C(s, t, r, p, q) 
(4.8) (rp,q) GR3 JB(s, t, r, p, q)l 

> su IjB(s, t, r, p, q)j =W(S, t) 
(r,p,q) GR A(s, t, r, p, q) 

for all (s, t) E Q. 
If A, B, and C depend only on (s, t) CE 2, then the condition follows as an im- 

mediate consequence of uniform ellipticity. However, for the quasi-linear case, this 
is not true, as (4.7) shows. What is always true, of course, is that for fixed (r, p, q) C R3 

(4.9) C(s, t, r, p, q) > |B(s, t, r, p,q )| 

I B(s, t, r, p, q)I A(s, t, r, p, q) 

Thus, what (4.8) demands is that the relative magnitude of the left- and right-hand 
side of (4.9) do not vary "greatly" for fixed (s, t) C Q. In the special case that B is 
"small" (i.e. satisfies (4.5)) it is clear that (4.8) holds. 

An analogue of Theorem 4.0 for quasi-linear L will now be proven. 
THEOREM 4.1. Suppose L is unifortnly elliptic. Then there exist ko > 0 and 1 < 

1 

< c, independent of (s, t) C Q, and a mapping y: Q -* (0, oo) such that 

A'(s, t, r, p, q)= A(s, t, r, p, q) - IB(s, t, r k,p 

(4.10) C'(s, t, r, p, q) = C(s, t, r, p, q) - y(s, t) |B(s, t, r, p, q)l >kof 

B'(s, t, r, p, q) =-2(s ) B(s, t, r, p, q)/ _ 0, 
2,y(s, t) 

for all (s, t, r, p, q) C Q X R3, if and only if$ (4.8) holds for all (s, t) e Q. Moreover, 'y 
can be chosen as y(s, t) = a(s, t)/,B(s, t), where a(s, t) and j3(s, t) are relatively prime 
integers satisfying a(s, t) _ 1, ,B(s, t) < -q for all (s, t) E Q2, and oy(s, t) E (w(s, t), 
W(s, t)). 

Proof. Without loss of generality, assume B(s, t, r, p, q) 0 0 for all (s, t) C Q. 
Since (4.8) holds, and 52 is compact, we may choose 

0 < e* < min { inf W(s, t) - w(s, t) co} 
(3, t) C 2 

where co > 0 is the smaller constant of uniform ellipticity. If at a point (so, to) C Q, 

B(so, to, r, p, q) 0 0, then choose 

(4.11) A(sO, t0) C [w(so, to) + f*, W(so, to) - ]. 

Then, 
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A(so, to,r,p, q)- I(sO, to, r, p, q)l _ A(so, to, r, p, q)y(so, to) - jB(so, to, r, p, q)j 
,y(so, to) y(sO, to) 

> A(so, to, r, p, q)E* 

y(so, to) 

CoE 

W(so, to) - E 

The first inequality follows from (4.11), while the second follows from (4.11), and 
the uniform ellipticity of L. Assume next that 

CO 
B(so, to, r, p, q)j < 2(W(s0, to)- *) 

Then, it follows from (4.11) and uniform ellipticity that 

C(so, to, r, p, q)- y(so, to) IB(so, to, r, p, q)l ? co/2. 

If 

B(so, to, , p, q) > CO = 2( W(so, to) -*) 

then, by (4.11) and uniform ellipticity 

C(so, t0, r, p, q) - y(so, t0) IB(so, to, r, p, q)j - Ct) 
2(W(so, to) - E*) 

Now, it is clear there exists a -y: Q2 -> (0, o) satisfying (4.10) for all (s, t, r, p, q) E 
I X R3K, where 

(4.12) ko = 2 mi {,inf ( > 0. 2 (st) GO K t) - Ejj 

Set 

z = 2 min inf W(s, t)- w(s, t) O - 2E*. 
(, t) Q 2 

By definition of E*, z > 0. If z > 1, then we may choose q-= 1, since every interval 
[w(so, to) + E5, W(so, to) - EJ, (sO, to) c Q, will contain an integer. If z < 1, then 
choose an integer k such that 10k < z; then, there exists an integer &(so, to) such that 
&(so, t,)10k- [w(so, to) + E*, W(so, to) - ]. Thus, if we choose 

(4.13) = + 1 

where [ ] means greatest integer, the "if" proof of the theorem will follow, since if 
&(so, to) and 10k are not relatively prime, we may divide out the common factors 
without changing (4.13). 

If we assume there exists a ry: Q2 -* (0, co), such that (4.10) holds for all (s, t, r, p, q) 
E Q X R3, then we have for B(so, to, r, p, q) 4 0 that 

(4.14) I_ t r pB q) I B(so, to, r, p, q) (4.14) C(so, to, r,,q - k -> -y(s0, to) ~:A (so, to, r ,p, q) -k B( I t,r p, q)l = 
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where 

(4.15) Ekocl, 

and cl is the larger constant of uniform ellipticity. This follows immediately, since 
uniform ellipticity implies IB(s, t, r, p, q) I < cl for all (s, t, r, p, q) E Q X R3. Now, 
(4.8) is a direct consequence of (4.14). 

The next theorem, whose proof is analogous in the idea to that of Theorem 4.1, 
gives necessary and sufficient conditions so that y(s, t) may be picked independent of 
(s, t) ? n, as well as (r, p, q) E R3. 

THEOREM 4.2. Suppose L satisfies the hypothesis of the last theorem. Then, there 
exist relatively prime integers a and A with -y(s, t) - a/3 for all (s, t) C n, and a 
constant ko > 0, so that (4.10) is satisfiedfor all (s, t, r, p, q) C Q X R3, if and only if, 

(4.16) W- inf W(s, t) > sup w(s, t) =w. 
(s,t)Efl (8,t) 

We now proceed to show that the discretization (4.1) applied to a uniformly 
elliptic operator satisfying the conditions of Theorem 4.1 yields an operator T, which 
is I.D.D.P.T. We first need some preliminary definitions. 

Definition 4.3. We call a mesh h connected, if given any two mesh points Pi 
and Pi C Uh, then there exists a polygonal arc contained in Q which consists of 
straight line segments of constant length h starting at Pi and ending at Pi, each of 
whose endpoints is in Qh. 

Definition 4.4. Suppose W(s, t) > w(s, t) for all (s, t) E Q. Choose a(s, t) and 3(s, t) 
by Theorem 4.1. We call a mesh regular, if given any point Pm, CE Oh, then the points 
Pmfn+l Pm?l,n3 as well as the points Pm+,n+a~ and P are in h. Here a 

a(Pm,n) and A = 1(Pm,n). 
If the mesh does not satisfy Definition 4.4, then it will be necessary to alter the 

discretization at the nonregular points. This can be done as in Bramble and Hubbard 
[2]. For example, suppose Pi+l,7 iT Q. Then there exists X < 1 such that P+?,, CE ag 
and is on the line joining Pi, to Pi+, i. We approximate 

(4.17) U88(Pii) 2 [- 1 1 uii - ui + U + 1),; 

If any of the other points are not in Qh similar formulas are used. For the first 
derivatives similar redefinitions would, in general, be needed. Suppose we used the 
central difference approximation 

(4.18) U,(Pii) -Ui+l2 - 
2h 

Then, if P+,, i (E Q we would define the new approximation 

(4.19) U'(pii) _ (X + 1)h 

LEMMA 4.5. Let u C C2(Q). Then the discretization 

(4.20) u,(s, t) _ 2 [u(s -h, t) u(s, t) + u(s + Xh, t) (4.20 UISA, t) h2 _ + I X XG\ 1 



QUASI-LINEAR ELLIPTIC DIRICHLET PROBLEMS 267 

is consistent. Here X 1, if u(s + h, t) C Q; otherwise X Xh is the distance to the 
boundary along the line t constant through (s, t) C Q. 

Proof. Since u E C2(Q), we expand the right-hand side of (4.20) (i.e. (8h(s, t)u)) 
by the Taylor series. Then we obtain 

|UA(s, t) - (h(S, t)U)| = u(s, t) - u,,(s - Olh, t) + u88(s + 02h, t)X 

where 0 < 01, 02 < 1. Then noting that u88 is uniformly continuous on Q, we have 

lim 1u88(s, t) - (ah(S, t)u)| = 0 
h-0 

uniformly over (s, t) EE Q. 
Similar reasoning shows that the other discretizations (4.1) (b) and (4.1) (c) are 

consistent (when modified, where necessary, in a manner analogous to (4.20)). 
THEOREM 4.6. Suppose L is uniformly elliptic and (4.8) is satisfiedfor all (s, t) C Q. 

Let a = a(Pi) and ,B = f(Pi,) be chosen to satisfy Theorem 4.1. Suppose in addition 
Qh is connected. If we discretize the second derivatives by (4.1) and the first derivatives 
by any consistent discretization, then L yields a Th defined by (3.5), which is I.D.D.P.T. 

Proof. For clarity, we prove the theorem only for the case Qh regular; the modifica- 
tions for a nonregular mesh are immediate. Choose y E RN. Then 

h2[Th(Y)X]k = -2 (A'j + B$j + C$j)xij + A'j(xj+?, + xi1,j) 

(4.21) + C'j(xj j+j + xj,j_1) + B'j(xi+p,j+. + xi#,- -_a), Bij _ 0, 

= -2 (Ali + Bij + Cij)xjj + Aij(xj+?j, + xi-1,j) 

+ CIit(xi,i+1 + Xi,j_1) + Btj(xi+p,j_a + xi-#,i+.), Bii < 0. 

Here, 

Aj -A - IBiji, a 

(4.22) B'j= i iB , 
af3 

C = Ci -a Biil, 

where Aii A(Pij, Tky), and Pk Pi;. Theorem 4.1 gives that Ap C' > ko >0 for 
all Pii E Qh, so that the sign relationship of Definition 2.1 is satisfied. Choose any 
Pii and Pm, C Qh. By assumption, there exists a collection of endpoints satisfying 
Definition 4.3. Since the coefficients of xi ?,i and xj ,jj are all nonzero, we have 
from a basic result of graph theory (see Varga [9, p. 20, Theorem 1.6]) that Lh(y) is 
irreducible for all y C RN. That La(y) is in fact irreducibly diagonally dominant 
follows from (4.21), since some point Pl,m C 2iQh and the xl,m corresponding to it 
is in w, the vector of boundary values. Thus, 

N 

I Lh(Y) I i >-i [Lh(Y)]ii, i = 1, *,N, 
7.1; jfi 

with strict inequality for some i. The inequality (2.2) follows immediately from (4.21). 
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Since it is clear from (4.21) that Lh and Fh are continuous functions of x & RN, 
the last result and Lemma 4.5 imply that Theorem 3.3 holds for discretization (4.1). 
However, we can obtain a more interesting result for this particular discretization; 
that is, we can replace the requirement, g(s, t, r, p, q) I < M < co, by the condition 
of Bers [1]. 

THEOREM 4.7. Suppose the hypothesis of Theorem 4.6 is satisfied. Moreover, 
suppose A, B, and C E C(Q X R3), and g E C'(Q X R3) satisfy 

(4.23) lgp'(s,t, r,p, q)J, I(, t, r, p,q)l <c < c, 

gr (SI t, r, p, q) > o 

uniformly in El X RJ3. Assume we discretize the first derivatives by central differences. 
Then for h sufficiently small (3.6) has a solution. 

Proof. We again prove the theorem for regular meshes; the nonregular case 
requires only minor changes. We show this problem is equivalent to a problem which 
satisfies Theorem 3.3. By the Mean Value Theorem 

(4.24) Th(x)x = G(O) + f G'(OTx)Tx dO, 

where G: R"N R' is defined by [G(x)] -g(Pi, x3i-2, x& - x3). Define the operator 
Th I EL (RN -.-+ A(RN, RN)) by 

(4.25) Th, l(y)x = Lh, l(y)x + Fh l(y)w, 

where 

Lh,a(X) = L(x) - f G'(OTx)H dO, 
(4.26) 

Fh,l(X) Fh (x) - f G'(OTx)K dO, 

and H, K are the matrices in (3.4). Then to prove (3.6) has a solution we need only 
show, by (4.24), that the equation 

(4.27) Th, l(x)x= G(O) 

has a solution. However, with Pk Pii, we have 

[Th.l(y)x]k = [Th(Y)x]k - gk,rXj - - gk pX+ 1, j Xi-i j 

- 2h gk,JX,,;+1 - Xi,i_1], 

where gb,,, f I 
gr(Pk, OTky) do; and gkr,p gk,, are similarly defined. Hence, Igk,pI, 

Igk a| ? c and gk,r : 0. Since A', C'. ki > 0, we have from (4.21) and the result 
that T,h is I.D.D.P.T. for h sufficiently small, that for h sufficiently small and 
h < 2k'/c, Th,I is I.D.D.P.T. Then the existence of the solution follows from 
Theorem 3.3, since Th, is just the discretization of the operator 
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I 

Liu = Lu- gz(s, t, Ou, Ou., Out) dCu, 

- f ge(s, t, Ou, Ou,, Out) dOu, - f gr(s, t, Ou, Ou8, Out) dOu. 

Before we close we wish to point out that the results in this section as well as the 
last depended heavily on L being uniformly elliptic. However, this assumption can 
be changed to L elliptic without disturbing the results of this paper, if we are willing 
to make the following stringent assumptions: 

(a) Q is a convex Jordan region. 
(b) A satisfies the three-point condition on dQ. 
(c) If a, stands for the approximation to any second derivative and I is a linear 

function, then 8,(P)l 0 for all P Qh i.e. ah is exact on linear functions. 
(d) g(s, t, r, p, q) 0. 
A proof of this result can be found in Stepleman [8]. 
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